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The initial condition term that  must  be appended to the generalized master 
equation (GME) when the density matrix is not  initially diagonal in the 
representation chosen is studied and explicit expressions are obtained for 
several cases. The term is shown to vanish for initial occupation of a Bloch 
state of arbitrary wave vector if the system is a crystal and the representat ion 
is that  of site states, despite the violation of the initial diagonality condition. 
It is pointed out how one is to use the expressions for the initial term in 
transport calculations. 

KEY W O R D S  : Generalized master equations ; initial diagonality, Jocalized 
and delocalized condit ions, exciton transport in molecular crystals. 

1. INTRODUCTION 

Most macroscopic observations in the field of  nonequilibrium statistical 
mechanics are conventionally approached in terms of  the (Markovian) 
master equation ~1-3~ obeyed by Pro(t), the probabilities of  occupation of  states 
m of the system. The generalized master equation (GME) is a by-product of  
attempts ~4-1~) to derive this master equation from microscopic dynamics. It 
has the form 

f2 OPm(t)/St = dt' ~ [Y'//'m,(t -- t')P~(t') -- ~/'nm(t -- t')Pm(t')] (1) 
n 

and is formally connected to the master equation (sometimes termed the 
Pauli master equation) through the fact that the replacement ~ m , ( t ) =  
Fro, 8(t), where the Fm, are the transition rates in the master equation, reduce 
Eq. (1) to the latter. In the last few years the G M E  has ceased to be a mere 
intermediate step in the derivation of the master equation and has been put 
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to use in practical transport calculations. Some of this work has been reviewed 
recently. (z2) 

The GME can be shown (~-lz) to be an exact consequence of the micro- 
scopic dynamics, represented by the Liouville-von Neumann equation for the 
density matrix p, under a special initial condition, viz. that p(0) is initially 
diagonal in the states m. The fact that Eq. (1) (and consequently the master 
equation) cannot be derived for initially nondiagonal p's, at least by the 
methods of Refs. 4-1 l, is generally understood as representing the well-known 
fact that not all initial conditions 3 in a dynamic system result in approach to 
equilibrium and irreversible behavior. (The latter are characteristic of the 
master equation.)Unfortunately,  this disregard of the effect of the initial 
condition is not always permissible in situations where the GME has been 
put to practical use. Some of these situations specifically involve nondiagonal 
p's at t = 0. An example is provided by exciton transport. (12-14~ There Pro(t) 

is the probability that the ruth site in a crystal or a molecular aggregate is 
electronically excited. The creation of such an excitation (termed an exciton) 
involves definite phase relations over many sites: light, whose absorption 
creates the exciton, has a wavelength which is at least several hundreds of  
times as large as the intersite distance, and localized excitation in the absence 
of impurities is experimentally not attainable. Unless the description is 
changed from site space to k space, one must therefore contend with initial 
nondiagonal p's. 

In such situations one must examine the validity of  transport theories 
employing the GME and, if possible, one must extend Eq. (1) to cover 
situations where the initial diagonality condition does not apply. This 
paper attempts to make some headway toward these two goals. 

2. EXTENSION OF THE RANGE OF V A L I D I T Y  OF THE G M E  

Following Zwanzig, (s) one obtains 

8 t )  = _ d t ' ~ L e  - t ( t - t ' ) (1-~)L(1  - ~ ) L ~ p ( t ' )  
0 

- i ~ L e - ~ ( 1 - ~ ) z ( 1  - ~)p(0) (2) 

as an e x a c t  consequence of the microscopic dynamics under a r b i t r a r y  initial 
conditions. Here L is the Liouville operator denoting commutation with the 
Hamiltonian H, ~ is the diagonalizing operator, which may or may not 
involve an additional coarse-graining operation, (11-~8.~5) and h has been put 

a Consider, for instance, the initial state of a gas of atoms that interact only through 
collisions, placed in a container such that all atoms have velocities parallel to one 
another and perpendicular to a pair of opposite wails, and in such a way that the 
ensuing motion never results in atom-atom collisions. 
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equal to 1. If  the last term in Eq. (2) is neglected, the mth element of Eq. (2) 
is the GME Eq. (1). The two goals of this paper are therefore most naturally 
attempted by (i) examining the conditions under which the last term in Eq. (2) 
is zero, and (ii) evaluating it when it is nonzero. We thus investigate 

Jm(t) = -- i (ml~Le-"(1-#~L(1 _ ~)p(0)lm ) (3) 

We shall take N not to contain the coarse-graining operation, m-~3,~5~ This 
term Jm(t),  whose addition to Eq. (1) results in a universally valid equation, 
is known (8~ to be zero for initially localized conditions since (1 - ~)p(0) is 
then zero. Here and henceforth we picture the states m as localized on the 
sites of  a crystal, because our primary motivation for this study comes from 
exciton transport. Obviously, the results are not restricted to this meaning 
of the representation of  states m. 

Consider now the other extreme for the initial condition. Let the system 
be initially totally delocalized: in fact, let it occupy a single Bloch state of  the 
crystal with an arbitrary wave vector 7. Consider a one-dimensional crystal 
of  N sites for simplicity. Then 

pmn(O) ~ (mlp(O)ln) = (1/N)e  in(m-n~ (4) 

This represents equal initial probability at every site and (1 - ~)p(0) = 0 is 
definitely not satisfied. Writing the matrix elements of the crystal Hamiltonian 
specifically as ( m l H I n ) =  Jm, = J m - , ,  where the last identity represents 
translational invariance in the crystal, leads to 

1 ~ [jm_se~n(s_.) [Lp(0)]m, = ~ - Js_ne ~n(m-s)] = 0 (5) 

Needless to say, single-indexed quantities such as Jm do not represent diagonal 
elements. Equations (4) and (5) and the fact that the diagonal part of p(0), 
being a multiple of the identity, commutes with any operator, result in 
L(1 - ~)p(0) = 0. Expanding the exponential operator in Eq. (3), rearrang- 
ing the terms, and using the result just obtained, leads to 

Jm(t ) = -- i (ml~e-~tL(~-e~L(1 -- ~ ) o ( 0 ) l m >  -- 0 (6) 

The GME (1) is thus accurate not only for localized initial conditions, 
but also for  fu l ly  delocalized ones (in the sense of the occupation of  a Bloch 
state), despite the fact that the latter correspond to a nondiagonal p(0). 

3. EXPRESSIONS FOR THE INITIAL TERM 

We shall attempt to derive useable expressions for Jm(t) in intermediate 
situations which are neither localized nor fully delocalized. The Schr6dinger 
equation 

i OCm/Ot = ~ Jm-.C,~ (7) 
n 
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for the amplitude c.~ that the system occupies the site m, gives 

c~(t) --- ( l /N) ~ {exp(-- i tJO e x p [ - i q ( m  - n)]}cm(0) (8) 
r~,q 

for arbitrary initial conditions. Here Jq -- ~ J , . e  ~q~. Define ~'m. = - - ~  
for m ~ n and d ~ .  = ~ - / / r  and the discrete Fourier transforms 
~'q, Jq,  P~ of the quantities ~'~, J~,  P~, respectively, in a manner analogous 
to the definition o f J  q. Here P m -  Cm*Cm is the probability of site occupation 
as in Eq. (1). Adding the term J~(t) to Eq. (1) and performing Fourier and 
Laplace transforms on it, one obtains 

p~(~) = 1 [P~(0) + 3~(0]  (9) 
+ ~?*(~) 

where tildes denote Laplace transforms and �9 is the Laplace variable. On the 
other hand, Eq. (8) gives 

1 ~ o~+~,~(o) 
P~(d = .y ~ + ;(j~+~ _ jo) (10) 

where 

p~'q(O) = ~ e~'~e-~qtc,~(O)cl*(O) (11) 
n, l  

Equating the right-hand-sides of  Eqs. (9) and (10) leads to expressions for 
$r and J,~(t) as follows. For the initially localized condition, Jm(t) [and 
consequently J~(e)] is zero and pk+q,q(0) equals 1. Comparison of Eqs�9 (9) 
and (10), with the reverse use of the definition of the ~r gives 

�9 e - i ~ ( m  - n )  

(12) 

which has been obtained, evaluated, and used by the author recently. (~6~ The 
Zwanzig treatment r of Eq. (2) shows explicitly that the memory kernel is 
independent of p(t) or of initial conditions. We are assured therefore that 
Eq. (12) also holds when J~(E) # 0 and we can thus use it to obtain an 
expression for jk(~) or for J~(t). Thus 

d~(c ) = Y., [p~+q,~(0) - Pk(0)I[E + i ( J  k§ -- dq)]-~ 
~q [e + i ( J  k+q - -  Sq)] 2'1' (13) 

3~(~) = (I/N) ~ og~(Oe -'~m (14) 

Using Eq. (I2) and the definition r = ~m r one may rewrite 
Eq. (13) as 

~gk(~) = (--N)[$CT"~(E)] ~ ~" ~z(,,,) #(k+q)'~c,(O)e-~lc,*(O) (15) 
q e + i ( J  ~+~ - Jq) 



Generalized Master Equations Under Delocalized Initial Conditions 337 

It is a straightforward exercise to show from Eqs. (15) and (14) that  &'re(t) 
equals zero for localized and fully delocalized initial conditions. We shall 
give here results for  two slightly more  complex initial situations: (i) equal 
occupat ion of  two distinct sites r and s, and (ii) equal occupat ion o f  two 
distinct Bloch states ~ and [~. In these respective cases 

p~+q'q(O) - P k ( O )  = �89 ~q(~-~) + e ~ e  ~(~-~)] (16) 

pe+q'q(O) - PC(0) = �89 + 3q, , )  - 2} + 3 ~ , . _ , { N S q , ,  - 1} 

+ 3 ~ , , _ u ( N 3 q .  u - 1}1 (17) 

For  variety we shall exhibit J~(~) for  case (i) and J,~(t) for  case (ii). Equat ion 
(16) yields after using Eqs. (15) and (12) 

= : [e  Q,_s(~) + e~SQ~_~(~)] (18) 

with 

, ]1  
Omk(~)  = ~ + i (  y~7-q - J q )  ~ + i (  J ~ + q  - J O  (19) 

F o r  initial equal occupat ion of  the Bloch states ~ and/z,  Eqs. (17), (15), (14), 
and (12) give 

J m ( t )  = ( 1 / N ) [ ~ ( t ) c o s ( ( ~  - ~)m} + St(t)sin((/~ - ~)m)] (20) 

c~( t )  = d t '  ~ ( " - " ) ( t  - t ' )  cos{(J n - J U ) t ' }  (21) 

~q'( t )  = - dr '  "ff/~("-n)(t - t ' )  sin{(J n - JOt '}  (22) 

where ~ / - . - ,  is given by the replacement k = / ~ - ~  in the expression 
~ k  = ~m e~m#~m, where ~m is given by Eq. (12). 

For  the infinitely long chain with nearest neighbor interactions J, it can 
be shown that  

r162 = - [e 2 + 16J 2 sin2(k/2)] 1f2 (23) 

~{~z + 16J2 s in2[ )~  _ 7)]}1/2 (24) 
c~(r = ~2 + 16J2 sin2[�89 _ ~)] sin2[�89 + v)] 

~(E) = (4J  sin[�89 - 7)] sin[�89 + V)]}(r + 16J2 sin2[)(tL _ V)]}~/2 

• {~2 + 16J2 sin2[�89 _ ~)] sin2[�89 + 7)]}-1 (25) 

For  instance, for  the case where t~ + ~ = ~r, Eq. (25) gives 

5~(t) = {4Jsin[�89 - v ) ] } J o { 4 J t  sin[�89 - ~7)]} (26) 

where J0 is the Bessel function of  zeroth order.  
Equat ion (9) shows the precise manner  in which one should put  to use 
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the various terms obtained in this section. They act as source terms in the 
GME Eq. (1) and are known from the initial condition. The well-known 
technique of obtaining solutions of a linear inhomogeneous equation from 
those of the homogeneous counterpart, which is, in fact, embodied in Eq. (9), 
goes on then to yield the probabilities. 

4. DISCUSSION 

Of what practical use are the expressions for J~  and Jm obtained in the 
previous section if for the perfect crystals for which they apply, direct solu- 
tions of Eq. (7) can be written down as easily ? This is evidently a relevant 
question. The answer is that they are useful in the analysis of not-so-perfect 
crystals in which there are "bath interactions," such as the exciton-phonon 
interaction, which introduce irreversibility into the problem and bring about 
approach to equilibrium. In such situations it is not known clearly how to 
augment the Schr6dinger equation (7), but a physical extension of the 
Liouville-von Neumann equation exists: 

Opmn/Ot = - i ~ [JmPs~ - JsnPms] -- a(1 -- ~m,n)Pmn (27) 

The last term in Eq. (27) causes the destruction of off-diagonal elements of the 
density matrix, and a represents the "bath interactions." This equation has 
been used widely aT> and can b~ considered a particular case of the stochastic 
Liouville equation. ~18-2~ The author has shown recently ~2~> that the #'m-,(t) 
and Jm( t )  corresponding to Eq. (27) are obtained from those corresponding 
to Eq. (27) in the absence of the a term by multiplying the latter quantities by 
e -at . It is for these situations (corresponding to real  systems, since bath 
interactions always exist in the real world) that the present analysis and that 
in Ref. 16 are useful, although they derive from the pure (a-less) situation, 
which is as easily analyzable from Eq. (10). 

Thus, for real systems one replaces ~ by e + ~ in the right-hand sides of 
Eqs. (12), (13), and (15), (18) and multiplies that of Eq. (20) by e -at. This is 
no doubt an essentially phenomenological way of introducing irreversibility 
into the system and it presupposes that the characteristic times of ~r and 
$r are exactly the same. This presupposition leads, however, to the 
comfortable result that the time range for which the Markovian approxima- 
tion is applicable is also the time range for which the J ( t )  terms can be 
neglected. The Markovian master equation does not therefore require to be 
supplemented by driving terms arising from J( t) .  Needless to say, there is no 
reason to believe that this situation is universally valid. 

Being motivated by exciton transport in crystals, we have attempted to 
examine the J ( t )  term for a system characterized by translational invariance. 
Equations (13) and (15) provide the explicit useable expressions for the J ( t )  
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terms in the general case, Eq. (9) shows how to use them, Eqs. (18) and (20) 
constitute particular cases, and the striking result is in Eq. (9), that the J ( t )  
term is zero for an initial Bloch state despite the violation of the initial 
diagonality condition. This result is significant for exciton transport, as it 
answers objections to the GME theory that one might have raised on the basis 
of the nature of light absorption, i.e., of  exciton creation. ~14~ 

The result is also expected on symmetry grounds: occupation of a 
single Bloch state ensures equal probabilities at all sites and consequently no 
further change in them. Thus the left-hand side of Eq. (1) is zero for all times 
and so is the right-hand side by symmetry in the crystal. The Jm(t) term 
appended to Eq. (1) must therefore be also zero for all times. This comment 
raises the question of  the usefulness of the result proved in Section 2. If  
initial occupation of a Bloch state leads to constant probabilities for all 
times, of  what interest can a result relevant to this situation be ? Once again 
the answer lies in the possibility of  an approximate extension: the most 
common use of transport equations, of which Eq. (1) is an example, lies in 
situations where an additional term involving a trap, physical or formal, is 
appended to the equations. The trap term may represent an absorber which 
collects and removes excitation, as in photosynthesis ~22,23)'~ or in other 
experimental situations/24~ In this case the creation of the exciton may be 
considered to a good approximation to lead to the initial occupation of  a 
single Bloch state. Although the probabilities are initially uniform over the 
system, the trap effect will lead to changes in them. Whether it is the G ME or 
the master equation that controls the.dynamics will certainly make a differ- 
ence in the time dependence of the "excitation function, ''~2~ which is the 
total probability that the system is excited. One should thus certainly apply 
the GME theory to this situation if any nonnegligible coherence is suspected 
to be present in the dynamics. To apply the GME theory in the form of  Eq. (1) 
one must be assured that Jm(t) is zero. The result of  Section 2 provides this 
assurance. The general message of that result is thus to use Eq. (1) whenever 
a wave packet of very narrow or very wide spread in wave vector values is 
created initially (by light absorption in the exciton case). In the more complex 
situation of an intermediate spread, Jm(t) terms such as those in Eqs. (18) and 
(20) must be evaluated and used as explained above. It is planned to present 
in a future publication details of  such calculations in several practical cases. 
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